If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-24+-18x+6x^2=0
We add all the numbers together, and all the variables
6x^2-18x=0
a = 6; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·6·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*6}=\frac{0}{12} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*6}=\frac{36}{12} =3 $
| 5y-20=3y+25 | | -24-18x+6x^2=0 | | 5/7x-2=-13 | | Y=1,5x+6 | | 5/12y+1/6=7/6 | | 8(x-1)-2x=-(-+50) | | 2x/1x=2 | | 2x/2x=2 | | 2x/1x=1 | | 51x+64x=517.5 | | −7+4m+10=15−2 | | 3+10=2x+7 | | 3(z+5)=2z+15+z3(z+5)=2z+15 | | 3n-7n-18=30 | | 6(2x-8)+56=-8 | | 3/5(y-2)-19/5=-5 | | 4x=3=x | | 0.5x+0.2(40)=0.4(x+10) | | 6/11(t-3)-41/11=-4 | | 4(4+4m)=80 | | 4(2t-9)=-9(7-t) | | 4z+6=4(z+5)-16 | | 6x+6+4=-14 | | 5=8−3k | | 5y+14=5(y+4)-8 | | 9z+6=9(z+3)-26 | | 4+7x=8x+2x | | 12x÷8=6 | | 11-5x=56 | | 6z+4=6(z+3)-14 | | 4w+5=4(w+4)-11 | | 9x-38=7x-10 |